Abstract

Layered double hydroxides/epoxy (LDHs/EP) nanocomposites were prepared from organo-modified LDHs, a diglycidyl ether of bisphenol A monomer (DGEBA) and amine curing agents. The organo-modified LDHs were obtained by ionic exchange of a magnesium–aluminum carbonate LDH in an acid medium. X-ray diffraction and transmission electron microscopy showed a dispersion of the layers at a nanometer scale, indicating the formation of LDH/EP nanocomposites. The thermal degradation and flame resistance properties of LDH/EP nanocomposites, montmorillonite–epoxy (MMT/EP) nanocomposites, LDH/EP microcomposites and aluminum hydroxide–epoxy microcomposites were compared by thermogravimetrical analyses, simultaneous thermal analyses, UL94 and cone calorimeter tests. Only LDH/EP nanocomposites showed self-extinguishing behavior in the horizontal UL94 test; LDH/EP microcomposites and MMT/EP nanocomposites samples burned completely showing that the unique flame resistance of LDH/EP nanocomposites is related to both the level of dispersion and the intrinsic properties of LDH clay. Furthermore, cone calorimeter revealed intumescent behavior for LDH/EP nanocomposites and a higher reduction in the peak heat release rate compared to MMT/EP nanocomposites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call