Abstract

Herein, we reported the fabrication of porous iron oxide/carbon black (P–Fe2O3/CB) composite through a two-step engineering method. At first, Prussian blue microcubes were used as a precursor and further calcined to form P–Fe2O3 microcubes. The intercalation of CB nanoparticles with P–Fe2O3 nanocubes was processed through the ultrasonication method. The obtained P–Fe2O3/CB were successfully scrutinized through various physiochemical characterization methods. The proposed P–Fe2O3/CB-modified glassy carbon electrode sensor was successfully implemented in the electrochemical sensing of chlorpromazine hydrochloride due to its very low charge transfer resistance (Rct) compared to the other electrode modifiers. The sensitive detection of CPMH through differential pulse voltammetry exemplifies an excellent electroanalytical performance such as a wide linear range of 0.5–1472 μM, a lower detection limit (0.001 μM), and an appraisable sensitivity of 1.99 μA/μM cm−2 due to its availability of a high number of active sites and its large surface area, respectively. It also expresses excellent selectivity, repeatability, reproducibility, and stability results. Moreover, the practical feasibility of the as-fabricated P–Fe2O3/CB/glassy carbon electrode sensor shows exquisite recovery (98.1–100.8%) results with an appraisable current response in various biological, pharmaceutical, and environmental samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call