Abstract

The controlled synthesis of nickel oxide nanoparticle (NiO NPs) were synthesized by homogeneous precipitation method and have been characterized using UV–visible spectrophotometer, fourier transform-infrared spectroscopy, X-ray diffraction, atomic force microscope, scanning electron microscope and high resolution-transmission electron microscope. The synthesized NiO NPs was spherical in shape with an average size ranged between 3 and 5 nm. Subsequently, synthesis of NiO NPs coated on a bacterial nanowires (BNWs) film pre-cast on a glassy carbon electrode surface and the morphology and nature of the prepared composite was characterized using HR-TEM. The electro-chemical behavior of NiO NPs coated bacterial nanowires (NiO NPs-BNWs) was observed using cyclic voltammetry, linear sweep voltammetry and electrochemical impedance spectroscopy analysis. Highly comparable electrochemical conductivity of NiO NPs-BNWs was observed in this study. The BNWs sample exhibited a polarization resistance (Rp) to be 4457 Ω and the NiO NPs-BNWs sample exhibited polarization resistance (Rp) about 2270.4 Ω. The BNWs exhibited a CPE-T value to be 6.26 µF cm−2 and the NiO NPs-BNWs sample exhibited CPE-T to be 9.32 µF cm−2. The enhancement of peak currents is ascribed to the short heterogeneous electron transfer among the NiO NPs-BNWs. The defined nanolayer provides a novel platform for the next generation electrochemical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.