Abstract

Objective To prepare targeted nanoscale lipid ultrasound contrast agent and study the targeting function in vitro.Methods After the biotinylated monoclonal antibody Herceptin was prepared,the biotinylated degree and immunological activity were determined.Then biotinylated antibody was attached to the surface of nanoscale lipid ultrasound contrast agents by avidin-biotin system to prepare the targeted nanobubbles.The targeting function was studied by observing the combination ability of the targeted nanobubbles with SKOV3 cells in vitro,non-targeted nanobubbles as controls,and observing ultrasound imaging in vitro.Results About 16 biotin molecules were coupled to each antibody in average,and the immunological activity of the biotinylated antibody didn't decrease compared with the free one(P >0.05).SKOV3 cells were combined firmly and surrounded regularly by red dyed targeted nanobubbles,while control groups were negative.Ultrasound imaging could be significantly enhanced by targeted nanobubble binding to SKOV3 cell slides,the other two control groups were negative.Conclusions Nanoscale ultrasound contrast agent and antibodys can be combined firmly by avidin-biotin system to produce the targeted nanobubbles,which have strong targeting function in vitro and significantly enhanced ultrasound signal. Key words: Ultrasonography; Microbubbles ; Nanotechnology

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.