Abstract

The study was to construct reduction-responsive chondroitin sulfate A (CSA)-conjugated TOS (CST) micelles with disulfide bond linkage, which was used for controlled doxorubicin (DOX) release and improved drug efficacy in vivo. CST and non-responsive CSA-conjugated TOS (CAT) were synthesized, and the chemical structure was confirmed by Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance (1H NMR) spectroscopy, fluorescence spectrophotometer and dynamic light scattering. Antitumour drug DOX was physically encapsulated into CST and CSA by dialysis method. Cell uptake of DOX-based formulations was investigated by confocal laser scanning microscopy. In vitro cytotoxicity was studied in A549 and AGS cells. Furthermore, antitumour activity was evaluated in A549-bearing mice. CST and CAT can form self-assembled micelles, and have low value of critical micelle concentration. Notably, DOX-containing CST (D-CST) micelles demonstrated reduction-triggered drug release in glutathione-containing media. Further, reduction-responsive uptake of D-CST was observed in A549 cells. In addition, D-CST induced stronger cytotoxicity (P < 0.05) than DOX-loaded CAT (D-CAT) against A549 and AGS cells. Moreover, D-CST exhibited significantly stronger antitumour activity in A549-bearing nude mice than doxorubicin hydrochloride and D-CAT. The reduction-responsive CST micelles enhanced the DOX effect at tumour site and controlled drug release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.