Abstract
The semiconductor-sensitized thermal cell (STC) is a new thermoelectric conversion technology. The development of nonliquid electrolytes is the top priority for the practical application of the STC. In this study, a novel gel polymer electrolyte (PH-based GPE) composed of poly(vinylidenefluoride-co-hexafluoropropylene) (PH), 1-Methyl-2-pyrrolidone (NMP), and Cu ions was synthesized and applied to the STC system. The PH-based GPE synthesized at 45 °C showed higher open-circuit voltage (-0.3 V), short-circuit current density (59 μA cm-2) and diffusion coefficient (7.82 × 10-12 m2 s-1), indicating that a well-balanced structure among the NMP molecules was formed to generate a high-efficiency conduction path of the Cu ions. Moreover, the ion diffusion lengths decreased with decreasing content rates of NMP for the PH-based GPEs, indicating that the NMP plays an important role in the diffusion of Cu ions. Furthermore, the activation energy was calculated to be 107 kJ mol-1, and that was smaller compared to 150 kJ mol-1 for the poly(ethylene glycol)-based liquid electrolyte. These results play an important reference role in the development of electrolytes for STC systems. At the same time, they also provide a new avenue and reference indicator for the synthesis of high-performance and safe GPEs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.