Abstract

AbstractHigh yield oxidative polymerization of furan was accomplished in CHCl3 solvent at 0 °C. A nanocomposite of polyfuran (PF)–Al2O3 was prepared through polymerization of furan in a suspension of nanodimensional Al2O3 in CHCl3 at 0 °C. High yield polymerization of furan was also achieved in montmorillonite clay (MMT) without any extraneous oxidant. The formation of PF was confirmed by FTIR and elemental analysis. Thermogravimetric analyses revealed the following trends in thermal stability: PF < PF–Al2O3 < Al2O3 and PF < PF–MMT < MMT. Scanning electron microscopy showed the average particles sizes to be ca 51 nm and ca 40 nm for PF–Al2O3 and PF–MMT composites, respectively. The occurrence of a peak at 19.84 Å in the X‐ray diffraction pattern of the PF–MMT composite was indicative of the intercalation of PF in MMT lamellae. Transmission electron microscopic analyses for the PF–MMT composite also showed incorporation of PF moieties in‐between the MMT layers. The dc conductivity values (S cm−1) of PF–FeCl3, PF–Al2O3–FeCl3, PF–MMT and PF–MMT–FeCl3 systems were in the order of 10−6, 10−7, 10−8 and 10−7, respectively, and the values were significantly enhanced compared to the dc conductivity value of PF homopolymers (10−11). Copyright © 2004 Society of Chemical Industry

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.