Abstract

The present study described the preparation of N-acryloyltris (hydroxymethyl) aminomethane-bonded silica (NAS) stationary phase based on "thiol-ene" click chemistry. The composition of the surface grafts of NAS stationary phase was determined by elemental analysis and the results demonstrated the successful introduction of the N-acryloyltris (hydroxymethyl) aminomethane groups to the silica surface. Similar elemental composition of three batches of the NAS stationary phases exhibited good reproducibility of the preparation strategy. A set of standard compounds were employed to investigate the retention mechanism of the NAS stationary phase by three different empirical equations. The results indicated the retention of the tested analytes on the NAS stationary phase was based more on a mixed-mechanism rather than a simple partitioning or adsorption process. Eight compounds were selected to study the hydrophobic and hydrophilic properties of the NAS stationary phase in mobile phase with different ACN contents. Due to its hydrophilic triolacrylamide groups and short hydrophobic alkyl chains, the NAS phase was successfully applied in both reversed-phase liquid chromatography (RPLC) mode and hydrophilic interaction liquid chromatography (HILIC) mode. The influence of flow rate on the column efficiency was compared in these two modes. In contrast to RPLC columns, the overall heights equivalent to a theoretical plate (HETP) in HILIC is weakly dependent on the retention of the analyte and the HETP curve is much flatter in RPLC than in HILIC at larger reduced velocities. Furthermore, the separation of alkylbenzenes, nucleosides and nucleobases, water-soluble vitamins was achieved on the new stationary phase, demonstrating the excellent application potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call