Abstract

Irinotecan (IRT), the pro-drug of SN-38, has exhibited potent cytotoxicity against various tumors. In order to enhance the anti-tumor effect of IRT, we prepared IRT-loaded PLGA nanoparticles (IRT-PLGA-NPs) by emulsion-solvent evaporation method. Firstly, IRT-PLGA-NPs were characterized through drug loading (DL), entrapment efficiency (EE), particle size, zeta potential, transmission electron microscopy (TEM), and differential scanning calorimetry (DSC). We next studied the in vitro release characteristics of IRT-PLGA-NPs. Finally, the pharmacokinetics and pharmacodynamics profiles of IRT-PLGA-NPs were investigated. The results revealed that IRT-PLGA-NPs were spherical with an average size of (169.97 ± 6.29)nm and its EE and DL were (52.22 ± 2.41)% and (4.75 ± 0.22)%, respectively. IRT-PLGA-NPs could continuously release drug for 14days in vitro. In pharmacokinetics studies, for pro-drug IRT, the t1/2β of IRT-PLGA-NPs was extended from 0.483 to 3.327h compared with irinotecan solution (IRT-Sol), and for its active metabolite SN-38, the t1/2β was extended from 1.889 to 4.811h, which indicated that IRT-PLGA-NPs could prolong the retention times of both IRT and SN-38. The pharmacodynamics results revealed that the tumor doubling time, growth inhibition rate, and specific growth rate of IRT-PLGA-NPs were 2.13-, 1.30-, and 0.47-fold those of IRT-Sol, respectively, which demonstrated that IRT-PLGA-NPs could significantly inhibit the growth of tumor. In summary, IRT-PLGA-NPs, which exhibited excellent therapeutic effect against tumors, might be used as a potential carrier for tumor treatment in clinic.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call