Abstract

The ratio of gelatin to sodium carboxymethyl cellulose (SCMC) at which maximum yield was obtained was optimized. This optimized ratio of gelatin to SCMC along with other parameters was used to prepare microparticles of different sizes. Vegetable oil was used as emulsion medium. Effect of various factors like amount of surfactant, concentration of polymer on the formation, and size of the microparticles was investigated. These microparticles were used as carrier for isoniazid. Among different cross-linkers, glutaraldehyde was found to be the most effective cross-linker at the temperature and pH at which the reaction was carried out. The loading efficiency and release behavior of loaded microparticles were found to be dependent on the amount of cross-linker used, concentration of drug, and time of immersion. Maximum drug loading efficiency was observed at higher immersion time. The release rate of isoniazid was more at higher pH compared to that of at lower pH. The sizes of the microparticles were investigated by scanning electron microscope. In all the cases, the microparticles formed were found spherical in shape except to those at low stirring speed where they were agglomerated. Fourier transform infrared study indicated the successful incorporation of isoniazid into the microparticles. Differential scanning calorimetry study showed a molecular level dispersion of isoniazid in the microparticles. X-ray diffraction study revealed the development of some crystallinity due to the encapsulation of isoniazid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.