Abstract

Dissolving microneedles have become a focal point in transdermal drug delivery. They have the advantages of painless, rapid drug delivery and high drug utilization. The purpose of this study was to evaluate the efficacy of Tofacitinib citrate microneedles in arthritis treatment, assess the dose-effect relationship, and determine the cumulative penetration during percutaneous injection. In this study, block copolymer was utilized to prepare the dissolving microneedles. The microneedles were characterized through skin permeation tests, dissolution tests, treatment effect evaluations, and Western blot experiments. In vivo dissolution experiments revealed that the soluble microneedles completely dissolved within 2.5 min, while in vitro skin permeation experiments demonstrated the highest unit area of skin permeation of the microneedles reached 2118.13 mg/cm2. The inhibition of Tofacitinib microneedle on joint swelling in rats with Rheumatoid arthritis was better than Ketoprofen and close to that of oral Tofacitinib. Western-blot experiment comfirmed the Tofacitinib microneedle's inhibitory effect on the JAK-STAT3 pathway in rats with Rheumatoid arthritis. In conclusion, Tofacitinib microneedles effectively inhibited arthritis in rats, demonstrating potential for Rheumatoid arthritis treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call