Abstract
A novel wound dressing that possesses antibacterial properties and accelerates skin wound repair was developed by physically blending hyaluronic acid-grafted pullulan succinate (HA-st-Pu) with chitosan (CS). The HA-st-Pu polymer was synthesized and characterized, and then CS/HA-st-Pu film dressings were prepared by a freeze-drying method. The novel film wound dressings exhibited a three-dimensional cavity structure under scanning electron microscopy (SEM) and a better swelling ratio than CS, HA and Pu alone, absorbing a large amount of liquid and effectively maintaining the moist environment of the wound. CS/HA-st-Pu materials had no cytotoxicity and increased cell proliferation when coincubated with L929 cells. Moreover, CS/HA-st-Pu wound dressings exhibited a certain antibacterial capability against E. coli and S. aureus. In rat skin wound healing, CS/HA-st-Pu film dressings outperformed both the control and market band-aid groups with respect to the reduction of inflammation and acceleration of wound closure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.