Abstract

The structural and physicochemical properties of agar/maltodextrin-beeswax films in the presence of three emulsifiers, including glycerol monostearate, sodium stearoyl lactylate, and polysorbate 80 were investigated. Scanning electron microscopy revealed that addition of lower hydrophilic-lipophilic balance value emulsifiers produced smaller size and more uniform distribution of beeswax in the film matrix. X-ray diffraction and differential scanning calorimetry indicated that the emulsifiers with lower hydrophilic-lipophilic balance values promoted the compatibility between agar/maltodextrin and beeswax more effectively. The incorporation of different emulsifiers showed diverse impacts on the film network structure and physicochemical properties. Agar/maltodextrin-beeswax-polysorbate 80 film showed maximum stiffness (861.99 MPa). Agar/maltodextrin-beeswax-glycerol monostearate film exhibited the highest tensile strength (26.79 MPa), elongation at break (31.83%), water vapor barrier (7.64 × 10−13 g·m−1·s−1·Pa−1) and oxygen barrier properties (3.82 × 10−17 cm2·s−1·Pa−1), which could be more effective for packaging foods that are prone to oxidize.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call