Abstract

The poly(N-isopropylacrylamide) (NIPAAm) was first polymerized onto the surface of graphene quantum dots (GQDs) functionalized silica as packing materials via reversible addition-fragmentation chain transfer (RAFT) polymerization reaction, which can expand the interaction modes between stationary phase and analytes. A series of characteristic methods were selected to estimate the chemical bonding results of silica, involving Fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), thermogravimetric analysis (TGA) and scanning electron microscope (SEM). The prepared column can exhibit reversed-phase and hydrophilic interaction modes, which were demonstrated by the retention of eight kinds of target analytes with different Log P values. The column was then applied to separate banlangen granules and further verified by HPLC tandem time-of-flight mass spectrometry (HPLC/QTOF-MS). In conclusion, Sil-GQDs-PNIPAAm stationary phase improved the analysis range and performance of traditional phases, exhibiting flexible selectivity and application prospect for both hydrophobic and hydrophilic analytes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call