Abstract

Context The purpose of this study was to prepare enteric-coated particles based on albumin nanoparticles (NPs) using a mixture of PIA albumin NPs freeze-dried powder (PA-PIA) and PIIA albumin NPs freeze-dried powder (PA-PIIA) to improve the bioavailability effect of pristinamycin. Objective This is the first study on the preparation of pristinamycin into enteric-coated granules based on albumin NPs, and our study has effectively improved the bioavailability of pristinamycin and ensured its safety. Methods Pristinamycin albumin enteric-coated granules (PAEGs) were prepared by hybrid wet granulation. The characterizations of albumin NPs were performed by in vitro and in vivo studies of PAEGs. The assays were analyzed using zeta-sizer, transmission electron microscopy, high-performance liquid chromatography, and a fully automated biochemical index analyzer. Results The morphology of NPs was close to spherical. PIA-NPs and PIIA-NPs respectively had a zeta potential of (−24.33 ± 0.75) mV and (+7.30 ± 0.27) mV and mean size of (251.91 ± 19.64) nm and (232.83 ± 22.61) nm. The release of PIA and PIIA from PAEGs in the artificial gastrointestinal fluid was as high as 58.46% and 87.79%. In the experimental group of oral PAEGs, PIA and PIIA were AUC(0-t) (3.68 ± 0.58) mg·L−1·h−1 and (2.81 ± 1.06) mg·L−1·h−1. The results of aspartate aminotransferase and alanine aminotransferase biochemical indices showed that there was no significant difference between the experimental and normal groups of oral PAEGs. Conclusion The PAEGs significantly increased the release of PIA and PIIA in simulated intestinal fluid and improved the bioavailability. The oral administration of PAEGs may not damage the liver of rats. We hope that our study will promote its industrial development or clinical application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call