Abstract

The use of oxidoreductases as biocatalysts for industrial production of valuable compounds has a strong demand for NADP. Herein, we prepared superparamagnetic NAD kinase catalyst to synthesize NADP in vitro. First, Fe3O4 particles were synthesized through a solvothermal method, followed by the chemical modification with epichloro-hydrin, iminodiacetic acid, and Ni2+ to yield functional Fe3O4 sub-microspheres. Subsequently, NAD kinase of Escherichia coli was overexpressed and immobilized on to the surface of magnetic sub-microspheres. The immobilized NAD kinase was used to catalyze the conversion of NAD to NADP in a cell-free system. Under optimal condition, the conversion ratio of NAD reached 91.7% and remained at 86.3% after repeated use for five times. Our study revealed that the novel magnetic NAD kinase catalyst possessed favorable properties for magnetic manipulation and NADP production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call