Abstract

A simple preparation method for β-cyclodextrin-silica hybrid chiral stationary phases was developed. Firstly, the β-cyclodextrin-silica derivative was synthesized by the reaction of 3-aminopropyltriethoxysilane and monochlorotriazinyl β-cyclodextrin under weak base condition. Spherical β-cyclodextrin-silica hybrid materials with β-cyclodextrin in the surface of pores by covalent bonding were prepared using 1,2-bis(triethoxysilyl) ethane and the β-cyclodextrin-silica derivative under the alkaline condition by one-step polymerization reaction. The β-Cyclodextrin-silica hybrid chiral stationary phases could be directly used as high performance liquid chromatographic packings after the template removal. The hybrid materials prepared in this paper possessed regular spherical morphology, good monodispersion, high specific surface area, good mechanical property, high chemical stability and simple preparation process. It combined the chiral recognition performance of β-cyclodextrin and the outstanding performance of organic-inorganic hybrid material. The effect of the composition, ratio and pH of mobile phase on chiral separation was investigated, and the best chiral separation conditions had been optimized. The baseline chiral separations for five chiral compounds were obtained under the optimal conditions. The results of enantioseparation showed that the hybrid chiral stationary phases had favorable chiral recognition ability. Compared with the traditional preparation process of chiral stationary phases, a new thought for new type of chiral stationary phase is provided by the present method in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call