Abstract

Polymer films consisting of nematic liquid crystal (LC) droplets and polymer networks were prepared by using a low-energy electron beam to irradiate a homogeneous mixture of nematic LC and bifunctional methacrylate monomer. Influences of such polymerization conditions as polymerization temperature, monomer concentration, and radiation energy on electrooptical properties of the compound films were examined. The polymer yield, affecting to a large extent the film properties, depended on the monomer concentration and the radiation energy. Compound films, which have a switching function from the scattering state to transparency by applying approximately 20-30 V between the two sides of the film, were obtained. In addition, it was found that a compound film with excellent electrooptical properties was prepared by changing impure LC in the droplets into pure LC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.