Abstract

With the popularity of 5 G, there is an increasing request for a light, high-performance, and stable structure for wireless communication. To solve the problems of delamination cracking and its own heavy weight of the conventional microstrip antenna, this study used ultra-high molecular weight polyethylene (UHMWPE) filament tows and purple copper filament tows as raw materials to prepare 3D woven hollow structure microstrip antenna preforms on a common loom. Using the prepared preforms for reinforcement and resin as the matrix, the VARTM process was used to prepare a 3D woven hollow structure microstrip antenna with a height of 6.8 mm, a weight of 35 g, and a bulk density of 0.7 g/cm3. The combination of the electromagnetic performance test and HFSS software simulation shows that the antenna has excellent radiation performance with a gain of 7.5 dB and a measured VSWR of 1.25. The mechanical performance test results show that it can withstand a maximum compression load of 2982 N and a maximum bending load of 364 N with no obvious delamination at the fracture. It is light, thin, and load-bearing with excellent radiation performance. There will be great potential in the unmanned field and the space field in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.