Abstract
In order to decrease and control electromagnetic pollution, absorbing materials with better electromagnetic wave absorption properties should be developed. In this paper, a nanocrystalline alloy ribbon with the composition of Fe73.2Si16.2B6.6Nb3Cu1 was designed and prepared. Nanocrystalline alloy powder was obtained by high-energy ball milling treatment. The effects of ball milling time on the soft magnetic properties, microstructure, morphology, and electromagnetic wave absorption properties of alloy powder were investigated. The results showed that, as time increased, α-(Fe, Si) gradually transformed into the amorphous phase, and the maximum saturation magnetization (Ms) reached 135.25 emu/g. The nanocrystalline alloy powder was flakelike, and the minimum average particle size of the powder reached 6.87 μm. The alloy powder obtained by ball milling for 12 h had the best electromagnetic absorption performance, and the minimum reflection loss RLmin at the frequency of 6.52 GHz reached −46.15 dB (matched thickness was 3.5 mm). As time increased, the best matched frequency moved to the high-frequency direction, and the best matched thickness decreased, while the maximum effective absorption bandwidth ΔfRL<−10 dB was 7.22 GHz (10.78–18 GHz).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.