Abstract

Functional polymers featuring good processability in non-halogenated, benzene-free green solvents are highly desired due to health and environmental concerns. Herein, a series of novel D-A type conjugated polymers, PBDT-IIDs, are designed and successfully prepared by "green" functionalization of the polymers with highly hydrophilic, highly polar, highly flexible, and biocompatible oligoethylene glycol (OEG) side chains in order to improve the processability. These series polymers are named PBDT-IID2, PBDT-IID3, and PBDT-IID4, respectively, according to the number of oxygen atoms in the side chain. After confirmation by structural characterization, the basic properties of PBDT-IIDs are also investigated. With the increase in the OEG side chain length, the polymer PBDT-IID4 not only has good solubility in the halogen solvent chlorobenzene, but also exhibits excellent solubility in the green halogen-free solvent methyltetrahydrofuran (Me-THF). As a result, the green solvent Me-THF can also be applied to prepare PBDT-IIDs' electrochromic active layers, except for chlorobenzene and toluene. The electrochromism of PBDT IIDs under both positive and negative voltages has a practical application potential. The several controllable switches between dark green and khaki (0-0.6 V) are expected to show great potential in the field of military camouflage. Furthermore, according to the principle of red, green, and blue (RGB) mixing, light blue-green in the reduced state (-1.6 V) can be used in the preparation of complementary ECDs to provide one of the three primary colors (green).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call