Abstract

Abstract One important challenge of lithium ion batteries is to improve the energy density while maintaining long-term cyclability. The energy density is strongly dependent on the Ni content in LiNi1-x-yCoxMnyO2. Herein, Ni-rich LiNi0.91Co0.06Mn0.03O2 has been synthesized as a high energy cathode material by co-precipitation method and the electrochemical performance of the LiNi0.91Co0.06Mn0.03O2 has been investigated. The granule morphology LiNi0.91Co0.06Mn0.03O2 with high crystallinity is obtained and which delivers a discharge capacity of 208.3 mA h g−1 with cyclability of 61.9%, after 100 cycles and rate performance of 85.6%, at 2 C. These findings indicate that LiNi0.91Co0.06Mn0.03O2 is one of the promising candidate cathode for high-energy lithium ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.