Abstract

A set of graphene nanosheets (GNS)/nickel hydroxide (Ni(OH)2) composites were successfully synthesized by adding single-walled carbon nanotubes (SWCNT) to the composites with various weight contents. The mixed composites were prepared by ultrasonication and chemical precipitation. It is postulated that the SWCNT act as additives in the composites, preventing the aggregation of the graphene sheets. The structural characterization indicated that the Ni(OH)2 nanoparticles were deposited on the surface of GNS, and the SWCNT were dispersed between or onto the graphene sheets. The electrochemical performance of the composites was investigated by changing the contents of the added SWCNT. The prepared GNS/SWCNT/Ni(OH)2 composites exhibited the superior electrochemical performance, indicated by the large specific capacitance over 1000Fg−1 and excellent cycle performance over 2000 cycles. Among the prepared composites, the GNS/Ni(OH)2 composite containing 20wt.% SWCNT displayed the maximum specific capacitance with a value of 1149Fg−1 at a in 6M KOH electrolyte. Moreover, 92% of the initial specific capacitance of the composite was maintained after 2000-cycle test. Based on these results, the composite is thought to be suitable candidate for supercapacitor electrode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.