Abstract

Mesoporous carbon (MPC) with uniform inner mesopore structure and high specific surface area prepared by an MgO-templated method has been employed for a substrate of MnO2/C composite. The MnO2/C composite was synthesized by anodic or cathodic electrodeposition of MnO2 from MnSO4 or KMnO4 precursor, respectively, on the MPC substrate. The XRD patterns of the composite confirmed that MnO2 was effectively deposited on the substrate under both anodic and cathodic electrodeposition processes. From the SEM images, sheet-like MnO2 was deposited by anodic deposition (a-MnO2/C) while needle-like MnO2 deposition was observed for the cathodic deposition (c-MnO2/C). The voltammetric experiments showed that the capacitive behavior of the composite depended on the preparation method. The difference in the specific capacitance between a-MnO2/C and c-MnO2/C is considered to be mainly due to the shape of MnO2 deposited on the MPC substrate. The electrochemical capacitance of c-MnO2/C was much higher than that of the substrate carbon. The observed capacitance increase in c-MnO2/C was attributed to the pseudo-capacitance of MnO2 that utilized effectively in controlled pore structure of MPC. The composite electrode, prepared by the cathodic deposition (c-MnO2/C), showed high specific capacitance and good durability for constant-current charge–discharge cycling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.