Abstract

Lead dioxide electrodes were prepared by pulse electrodeposition in the lead nitrate solution with different pulse current density. The effects of pulse current density on the morphology and structure of lead dioxide electrodes were studied by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The SEM and XRD results show that the increase of pulse current density can make the morphology more fine, and the crystal size of lead dioxide decreases with the increase of pulse current density. The anodic polarization curves demonstrate that the oxygen evolution overpotentials of lead dioxide electrodes also enhance with the increase of pulse current density. The stability of lead dioxide electrodes enhances with the increase of pulse current density until 15 mA cm–2, then the stability decreases. The electrocatalytic property of lead dioxide electrodes was examined for the electrochemical oxidation of rhodamine B (RhB). The results show that the RhB removal efficiency on the lead dioxide electrodes increases with the increase of pulse current density, which can be attributed to the increase of oxygen evolution overpotential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.