Abstract

Copper- and cobalt-containing carbon composites were prepared by pyrolysis of an aniline-formaldehyde polymer (AFP) doped with the metal oxides, followed by the reduction of metal cations in an electrochemical cell. AFP + metal oxide nanocomposites were synthesized by introducing a metal salt during the polycondensation of aniline with formaldehyde and by alkaline precipitation of metal oxides into the polymer matrix. The heat treatment was carried out at 400, 500 and 700 °C. Microscopic studies revealed the formation of CuO crystallites in the shape of "stars" on the heat-treated carbon material. The resulting composites were saturated with hydrogen in an electrochemical system, which was accompanied by the reduction of copper and cobalt cations, and the appearance of the metals in zero-valence state. The so-prepared Cu + copper oxides/C and Co + Co(OH)2/C composites were used as electrocatalysts in the electrohydrogenation of acetophenone (APh). Compared to the electrochemical reduction of APh on a copper cathode (without catalysts), an increase in the rate of this process (by 2–4 times) in the presence of the composites and an increase in the APh conversion with the selective formation of 1-phenylethanol were established.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.