Abstract

In this article, preparation of Ga-doped zinc oxide (GZO) nanoparticles by a polymer pyrolysis method is reported. The pyrolysis behaviors of the polymer precursors prepared via the in situ polymerization of metal salts and acrylic acid are analyzed using thermalgravity-differential scanning calorimetry (TG-DSC) techniques. Then, the structural characteristics of the products are studied by X-ray diffraction (XRD) and transmission electron microscopy (TEM). It is revealed by the results that the GZO nanoparticles calcined at 600 °C show good crystallinity with the wurtzite structure. GZO nanoparticles doped with 4 mol% Ga have a mean particle size of 26 nm with spherical-like morphology. Electrical resistivity measurement shows that, before and after high temperature annealing under H 2 atmosphere, the resistivity of the GZO nanoparticles is decreased by one and four orders in magnitude, respectively, compared with the pure ZnO nanoparticles. In addition, due to its versatility, this in situ polymer pyrolysis method can be easily extended to synthesis of other n-type doped semiconductor, such as In and Al doped ZnO or Sb doped SnO 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call