Abstract

In order to solve the problem of gas channeling during CO2 flooding in low-permeability reservoirs, a novel CO2 responsive gel channeling system was prepared by using carrageenan, branched polyethylene imide and ethylenediamine under laboratory conditions. Based on the Box-Behnken response surface design method, the optimal synthesis concentration of the system was 0.5 wt% carrageenan, 2.5 wt% branchized polyethylenimide and 6.5 wt% ethylenediamine. The micromorphology of the system before and after response was characterized by scanning electron microscopy. The rheology and dehydration rate were tested under different conditions. The channeling performance and enhanced oil recovery effect of the gel system were simulated by a core displacement experiment. The experimental results show that the internal structure of the system changes from a disordered, smooth and loosely separated lamellae structure to a more uniform, complete and orderly three-dimensional network structure after exposure to CO2. The viscosity of the system was similar to aqueous solution before contact with CO2 and showed viscoelastic solid properties after contact with CO2. The experiment employing dehydration rates at different temperatures showed that the internal structure of the gel would change at a high temperature, but the gel system had a certain self-healing ability. The results of the displacement experiment show that the plugging rate of the gel system is stable at 85.32% after CO2 contact, and the recovery rate is increased by 17.06%, which provides an important guide for the development of low-permeability reservoirs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.