Abstract
Abstract A reversible associated copolymer capable of healing at room temperature was constructed using acrylic acid (AA) and hemin as anionic monomers, and methacryloyloxyethyl trimethylammonium chloride (DMC) as the cationic monomer. Through optimization of the synthesis conditions, characterization by 1HNMR, infrared spectroscopy, ultraviolet-visible spectroscopy, Thermogravimetric analysis, differential scanning calorimetry, and construction of reasonable models for dynamic simulation, the following conclusions were obtained: The introduction of Hemin could convert light energy into heat energy, accelerating the healing of damaged areas; the predicted glass transition temperature value matched well with the experimental value, demonstrating the reliability of the constructed polymer model; the cohesive energy density (CED), dominated by electrostatic interactions, was identified as the key factor in the self-healing mechanism; the study also visually captured the microscopic process of self-healing within the polymer, providing a detailed understanding of the molecular rearrangements that facilitate this process. This work offers valuable insights into the design of reversible associated polymers, contributing to the broader goal of developing functional polymer materials aligned with circular economy principles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.