Abstract

We have developed cyclodextrin-catalyzed lipid exchange methods to prepare large unilamellar vesicles (LUVs) with asymmetric charge distributions, i.e., with different net charges on the lipids in the inner and outer leaflets. LUVs contained a mixture of a zwitterionic lipid (phosphatidylcholine), cholesterol, and various cationic lipids (O-ethyl phosphatidylcholine or dioleoyl-3-trimethylammonium propane) or anionic lipids (phosphatidylglycerol, phosphatidylserine, or phosphatidic acid). Symmetric and asymmetric LUVs with a wide variety of lipid combinations were prepared. The asymmetric LUVs contained cationic or anionic outer leaflets and inner leaflets that had either the opposite charge or were uncharged. The behavior of symmetric LUVs prepared with zwitterionic, anionic, or cationic leaflets was compared to those of asymmetric LUVs. Lipid exchange was confirmed by quantitative thin-layer chromatography, and lipid asymmetry by a novel assay measuring binding of a cationic fluorescent probe to the LUV outer leaflet. For both symmetric and asymmetric LUVs, the level of entrapment of the cationic drug doxorubicin was controlled by the charge on the inner leaflet, with the greatest entrapment and slowest leakage in vesicles with an anionic inner leaflet. This shows that it is possible to choose inner leaflet lipids to maximize liposomal loading of charged drugs independently of the identity of outer-leaflet lipids. This implies that it should also be possible to independently vary outer-leaflet lipids to, for example, impart favorable bioavailability and biodistribution properties to lipid vesicles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call