Abstract

This study deals with the preparation and dielectric properties of polyurethane (PU) elastomer films by resol-derived ordered mesoporous carbon (OMC) nanopowder incorporation in the PU polymer matrix. Resol-derived OMC with a 2D hexagonal mesoporous carbon framework is used as conducting fillers to achieve homogeneous dispersion and favorable interfacial interactions in the polymer matrix. The dielectric properties depend on the applied field frequency and the carbon filler weight fraction. The carbon fraction has little effect on the relative permittivity. The relative permittivity of all the PU-OMC composites increases with the decline of frequency. Incorporating a small amount of OMC into the PU polymer had no influence on the dielectric loss. Along with the increasing carbon fraction above the percolation threshold, dielectric loss of PU-OMC composites increases exponentially in the low frequency range. PU-0.75 wt% OMC composite possesses the best dielectric properties, and the obtained relative permittivity and dielectric loss at 1 kHz is 9.59 and 0.03018, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.