Abstract

There have been many recent advances in the controlled polymerization of α-amino acid-N-carboxyanhydride (NCA) monomers into well-defined block copolypeptides. Transition metal initiating systems allow block copolypeptide synthesis with excellent control over number and lengths of block segments, chain length distribution, and chain-end functionality. Using this and other methods, block copolypeptides of controlled dimensions have been prepared and their self-assembly into organized structures studied by many research groups. The ability of well-defined block copolypeptides to assemble into supramolecular copolypeptide vesicles and hydrogels has led to the development of these materials for use in biological and medical applications. These assemblies have been found to possess unique properties that are derived from the amino acid building blocks and ordered conformations of the polypeptide segments. Recent work on the incorporation of active and stimulus-responsive functionality in these materials has tremendously increased their potential for use in biological and medical studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call