Abstract

An ideal self-sealing hydroxyapatite (HA)-MgO coating was designed on an AZ31 Mg alloy by one-step microarc oxidation (MAO) with the addition of HA nanoparticles into a base electrolyte. The formation mechanism of the self-sealing HA-MAO coating was discussed. The effect of the nano-HA addition on the corrosion resistance of the MAO coating was evaluated by corrosion tests in Hank's solution. The results show that HA nanoparticles inertly incorporated into the MAO coating during the process of coating growth. HA and MgO were the main constituents of the HA-MAO coating. The HA nanoparticles were absent in the inner barrier layer but concentrated in the outer porous layer. In addition, HA nanoparticles accumulated much more inside coating defects than in the other zones, which resulted in the nearly ideal sealing of micropores on the coating surface. By forming a denser and more stable outer layer, the incorporation of HA nanoparticles greatly enhanced the anti-corrosion properties of the MAO coating.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.