Abstract

Electroactive polyurethane (EPU) containing conjugated segments of electroactive amino-capped aniline trimer (ACAT) has been successfully synthesized and characterized through Fourier-Transformation infrared and UV–visible absorption spectroscopy. Subsequently, electroactivity (i.e., redox capability) of as-prepared EPU was investigated by electrochemical cyclic voltammetry (CV) studies. It was noticed that the as-prepared EPU exhibited reversible redox capability was found to reveal better corrosion protection effect on cold-rolled steel (CRS) electrodes than that of non-electroactive polyurethane based on a series of electrochemical measurements such as corrosion potential, polarization resistance, corrosion current and electrochemical impedance spectroscopy (EIS) studies in 5 wt-% NaCl electrolyte. This significant enhancement of corrosion protection on CRS electrodes as compared to non-electroactive polyurethane might be probably ascribed to the redox catalytic property of as-prepared EPU coatings inducing the formation of passive layer of metal oxide, as evidenced by the SEM and ESCA studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call