Abstract

Ni–SiC composite thin films were successfully prepared via direct-current (DC) and ultrasonic pulse-current (UPC) deposition. The morphologies, mechanical properties, and corrosion properties of the films were investigated via atomic force microscopy, X-ray diffraction (XRD), Vickers hardness test, scanning electron microscope (SEM), cyclic polarization, and gravimetric analysis. The results show that the Ni–SiC composite thin films synthesized via UPC deposition possess a compact and exiguous surface morphology. The XRD results indicate that the average grain diameters of Ni and SiC in the UPC-deposited thin film are 63.6 and 38.5nm, respectively. The maximum microhardness values for the DC- and UPC-deposited Ni–SiC composite thin films prepared are 871.7 and 924.3HV, respectively. In the corrosion tests, the UPC-deposited films have a higher corrosion resistance than those prepared by DC deposition with the same SiC content.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.