Abstract

Starch adhesive is a commonly used bonding glue that is sustainable, formaldehyde-free and biodegradable. However, there are obviously some problems related to its high viscosity, poor water and mildew resistance. Hence, exploring a starch-based adhesive with good properties that satisfies the requirements of wood processing presents the context of the current research. Thus, corn starch was used as raw material to form oxidized starch (OCS) via oxidation using sodium periodate, it was reacted with a synthesis polyurea compound that prepared from hexanediamine-urea (HU) obtained by deamination to yield a oxidized starch-hexanediamine-urea adhesive (denoted hereafter as OCSHU). The oxidation process was optimized in terms of oxidant concentration, reaction time and temperature. Furthermore, the impact of HU addition on the mechanical properties of the adhesive was explored. Results indicate adhesive exhibited outstanding shear strength, when 13 % of NaIO4 was used as an oxidant to treat starch at 55 °C for 24 h, and involved in a subsequent reaction with 40 % of HU. The dry shear strength, 24 h cold water strength, 3 h hot water strength and 3 h boiling water strength are 1.84, 1.50, 1.32, and 1.31 MPa. Meantime, OCSHU adhesive solution revealed good storage stability whereas cured resin exhibited mildew resistance. The developed adhesive is a simple and green biomass wood adhesive.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call