Abstract

Coal gangue is a kind of solid waste produced in the process of coal mining and washing. Its silicon aluminum silicon aluminum oxide content is high, respectively, which are suitable for resource utilization as raw materials for Si–Al molecular sieving. In this paper, a novel, simple, low-cost, and environmentally friendly process was carried out to prepare ZSM-5 zeolite by solvent free method after calcination, acid leaching, and alkali melting. The obtained samples were characterized by Energy Dispersive Spectrometer (EDS), Inductively Coupled Plasma (ICP), Thermo-gravimetry Analysis (TG), X-ray Photoelectron Spectroscopy (XPS), Fourier Transform Infrared Spectrometer (FTIR) X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and N2 adsorption isotherm. The characteristics of the raw materials and the adsorption mechanism of the prepared samples were characterized. Through a series of pretreatment such as calcined acid leaching and alkali melting of the raw materials, the silicon-aluminum ratio of the sample reaches 1.749, and the maximum specific surface area of the sample can reach 252.59 m2/g. The obtained samples were used to adsorb heavy metal ions and methylene blue solution, and the removal rate of lead ions and methylene blue solution was more than 95%. The theoretical maximum adsorption capacity of Pb ion, methylene blue solution and copper ion can reach 232.56 mg/g and 118.34 mg/g. The adsorption process is mainly chemical adsorption. The product could be suitable for removing both heavy metal ions and cationic dyes from the wastewater and had broad application prospects.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.