Abstract
In this study, thin films of pure ZnO and doped ZnO with different percentages of gallium (0.5, 1, 2 and 4vt. %) on the glass substrates were deposited by using sol-gel method via spin coating technique at 2500 rpm, and all layers were annealed at 200°C for 1h and then Were examined their electrical, optical and structural properties. Concentration of all solution was 0.1M. The results show that the optimized layer is 0.5% GZO. By examining the transmittance spectrums we find that by doping the transparency of samples were improved and all samples in the visible areas 400-800nm are transparent. The electrical conductivity of all samples has been measured by four-point probe technique. The electrical conductivitys of pure ZnO sample and 0.5% GZO are 910-5 S/cm and 110-4 S/cm respectively. It can be a good choice for optoelectronic applications. Also X-ray diffraction results showed that diffraction peaks of 0.5% GZO sample have a small changes towards lower angles compared to the diffraction peaks of ZnO.
Highlights
In recent years, the transparent conductive thin films, have attracted much attention
Layers that obtained from sol-gel method, are uniform and chemical characteristics
Layers with different concentrations of gallium impurities were prepared by sol-gel method via spin coating technique and their properties were studied
Summary
The transparent conductive thin films, have attracted much attention. Preparation and Characterization of ZnO Thin Layers with Various Percentages of Gallium Impurities. Gallium impurity was added into the ZnO lattice and were examined it’s structural, optical and electrical properties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.