Abstract

AbstractA series of waterborne polyurethane (WBPU)/clay nanocomposite coating materials were prepared by prepolymer process with different clay contents (0–2 wt %). The study investigated surface structure as well as water resistance, thermal, mechanical, and water vapor permeability (WVP) of composite materials as a function of clay contents. The glass transition temperature of composite materials was higher than pristine WBPU and also increased with increasing clay contents. Thermal stability, and water resistance of the nanocomposite films also increased, when compared with pristine WBPU, and these properties increased with an increase in clay content. The maximum tensile strength was found with optimum clay content (1 wt %) of composite films. The WVP of coated nylon fabrics depend on the clay content and temperatures. The rate (%) of WVP of coated nylon fabrics decreased with increasing clay content at a fixed temperature. However, at a fixed clay content the WVP increased with the increase of temperatures. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.