Abstract
A series of novel anti-corrosive coatings were synthesized successfully. Water-borne polyurethane (WPU) was synthesized using polyethylene glycol and modified by grafting benzotriazole (BTA) as a pendant group (WPU-g-BTA) and N-alkylated amines (ethylene diamine (A), diethylene triamine (B), triethylene tetramine (C)) as side-chain extenders. Fourier-transform infrared spectroscopy, thermogravimetry, and dynamic mechanical analyses were used to characterize the structural and thermomechanical properties of the samples. A gas permeability analyzer (GPA) was used to evaluate molecular barrier properties. The corrosion inhibition performance of WPU-g-BTA-A, WPU-g-BTA-B, and WPU-g-BTA-C coatings in 3.5 wt% NaCl solution was determined by electrochemical measurements. WPU-g-BTA-C coating synthesized with a high cross-linking density showed superior anticorrosive performance. The as-prepared coatings exhibited a very low icorr value of 0.02 µA.cm-2, a high Ecorr value of -0.02 V, as well as excellent inhibition efficiency (99.972%) and impedance (6.33 Ω) after 30 min of exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.