Abstract

Waste ion-exchange resin was utilized as precursor to produce activated carbon by KOH chemical activation, on which the effects of different activation temperatures, activation times and impregnation ratios were studied in this paper. The CO2 adsorption of the produced activated carbon was tested by TGA at 30 °C and environment pressure. Furthermore, the effects of preparation parameters on CO2 adsorption were investigated. Experimental results show that the produced activated carbons are microporous carbons, which are suitable for CO2 adsorption. The CO2 adsorption capacity increases firstly and then decreases with the increase of activation temperature, activation time and impregnation rate. The maximum adsorption capacity is 81.24 mg/g under the condition of 30 °C and pure CO2. The results also suggest that waste ion-exchange resin-based activated carbons possess great potential as adsorbents for post-combustion CO2 capture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call