Abstract

A new strategy to synthesize visible-light-driven N doped and N–F–Ta tri-doped TiO2 nanocatalysts via a hydrothermal combined with heat treatment method applied in Rhodamine B (RhB) and phenol decomposition was reported. The tri-doped sample gave the highest visible-light photocatalytic activity when the molar ratio of Ta to Ti was 1%. At a low tri-doping level, physicochemical analysis indicated that the synergistic effects of N, F and Ta could effectively increase not only the crystallite surface area but also the light absorption and OH generation ability, which contributed to the enhancement of visible-light photocatalytic activities. EPR and XPS analysis demonstrated that N–Ta interaction induced the charge compensation to form N 2p–Ta 5d hybridized states which improved the separation ability of the photoexcited electron–hole pairs. Still, F incorporation facilitated the incorporation of N which further promoted the N 2p–Ta 5d hybridized states. The N 2p, π*N–O, oxygen vacancy, Ti3+ and Ta 5d states were also responsible for the band gap narrowing. However, a high tri-doping level would affect the crystal growth and introduce too many defects into the lattice, reducing the visible-light photoactivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.