Abstract

The pressing need for sustainable practices and eco-friendly materials in the face of escalating environmental concerns has led to exploring the transformation of discarded polyethylene terephthalate (PET) bottles into functional ultrafiltration membranes. This research prepares and characterizes ultrafiltration membranes derived from PET bottle waste. The study involves collecting PET waste material and fabrication processes to develop asymmetric flat sheet membranes blended with varying proportions of hydrophilic polyethylene glycol (PEG) using phase inversion techniques. Rigorous characterization employing SEM, EDS analysis, and water vapor permeability (WVP) assessments examine these membranes' structural, morphological, and performance attributes. The surface analysis elucidates a notable correlation between increased PEG content and larger pore sizes, consistent with prior studies involving PEG in membrane modifications. Additionally, incorporating PEG in the casting solution elevates water vapor permeability. Ultrafiltration experiments reveal differing rejection rates, with membrane M2 exhibiting enhanced anti-fouling properties despite reduced flux compared to M3 and M4. This research lays the groundwork for repurposing PET waste into selective membrane materials, emphasizing optimization strategies to enhance membrane quality and performance for diverse operational settings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call