Abstract

We demonstrate the synthesis of two triptycene-based microporous poly(benzimidazole) networks through condensation of triptycene-hexone with dialdehyde in refluxing glacial acetic acid containing ammonium acetate. The benzimidazole-linkage in the resulting polymers is confirmed by Fourier transform infrared and solid-state 13C CP/MAS NMR spectroscopy. The spindle-shaped morphology of the obtained polymers was also observed through scanning electron microscopy. The materials, with Brunauer–Emmet–Teller (BET) specific surface area over 600 m2 g−1, possess a good hydrogen storage capacity (up to 1.57 wt% at 77 K and 1.0 bar) and a high carbon dioxide uptake (up to 14.0 wt% at 273 K and 1.0 bar). These excellent performances would probably make them promising candidates for gas-selective adsorption, heterogeneous catalysis, and proton-exchange membrane fuel cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.