Abstract

A new method for preparation of titania nanowires with diameter around 10 nm and length up to 2–3 μm is described. The precursor was prepared from sodium titanate by adding ethylene glycole (EG) and heating at temperature of 198°C for 6 h under reflux. The sodium titanate glycolate formed by this way aggregated into 1D nanostructures and was subsequently transformed into titania glycolate during a chemical treatment with 98% sulfuric acid. Titania nanowires with variable amount of anatase and rutile were prepared by heating to temperatures in the range 350–1000°C. The precursor as well as titania based samples were characterized by X-ray diffraction, Infrared spectroscopy, Scanning electron microscopy, High resolution transmission microscopy, Thermogravimetry, Differential thermal analysis, Evolved gas analysis and Emanation thermal analysis. The nitrogen adsorption/desorption was used for surface area and porosity determination. The photoactivity of the prepared titania samples was assessed by the photocatalytic decomposition of 4-chlorophenol in an aqueous slurry under UV irradiation of 365 nm wavelength.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call