Abstract

This work reports the morphology and physical properties of silane-grafted polypropylene (PP-g-VTEOS) reinforced with silica nanoparticles and toughened with an elastomeric ethylene–octene copolymer (POE). Vinyltriethoxysilane (VTEOS) was grafted to polypropylene (PP) to form (PP-g-VTEOS), using a peroxide-initiated melt compounding technique. TEM observations of composites containing up to 7 wt% of the nanosilica revealed good dispersion of the silica nanoparticles, which partitioned selectively within the PP-g-VTEOS matrix. Rheological characterization in the linear viscoelasticity region showed significant increases in the low-frequency complex viscosity, storage and loss moduli, which stem from the polymer/filler and filler/filler interactions. The effects of surface treatment of the nanosilica on the morphology, thermal and mechanical properties of the composites were also investigated. The mechanical properties of the composites were greatly enhanced in terms of tensile and flexural strength, while impact strength was preserved when the silane-treated nanosilica was used.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.