Abstract

Cellulose nanocrystals (CNCs) can be used as building blocks for the production of many renewable and sustainable nanomaterials. In this work, CNCs were produced from bleached eucalyptus kraft pulp with a high yield over 75 % via FeCl3-catalyzed formic acid (FA) hydrolysis process. It was found that the particle size of resultant CNC products (F-CNC) decreased with the increase of FeCl3 dosage in FA hydrolysis, and a maximum crystallinity index of about 75 % could be achieved when the dose of FeCl3 was 0.015 M (i.e. about 7 % based on the weight of starting material). Thermogravimetric analyses revealed that F-CNC exhibited a much higher thermal stability (the decomposition temperature was over 260 °C) than S-CNC prepared by typical sulfuric acid hydrolysis. In the FeCl3-catalyzed FA hydrolysis process, FA could be easily recovered and reused, and FeCl3 could be transferred to Fe(OH)3 as a high value-added product. Thus, the FeCl3-catalyzed FA hydrolysis process could be sustainable and economically feasible. In addition, F-CNC could be well dispersed in DMSO and its dispersibility in water could be improved by a cationic surface modification.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call