Abstract

The thermally sensitive block copolymer, poly( N-isopropylacrylamide- b- dl-lactide) (PIPAAm–PLA), was synthesized by ring-opening polymerization of dl-lactide initiated from hydroxy-terminated poly ( N-isopropylacrylamide) (PIPAAm). A PIPAAm bearing a single terminal hydroxyl group was prepared by telomerization using 2-hydroxyethanethiol as a chain-transfer agent. Successful preparation of PIPAAm and the PIPAAm–PLA block copolymer was verified by gel permeation chromatography (GPC) and 1H-NMR spectroscopy. Polymeric micelles were prepared from block copolymers using a dialysis method. Their solutions showed reversible changes in optical properties: transparent below a lower critical solution temperature (LCST) and opaque above the LCST. Dynamic light scattering measurements were used to observe the formation of micellar structures approximately 40 nm in diameter, which do not change between 20°C and 30°C. Above the LCST, polymer micelles aggregated, a phenomenon found to be reversible since the aggregates dissociated again by cooling below the LCST. Further observations using atomic force microscopy (AFM) confirmed this behaviour. The properties of this block copolymer system are interesting from both applied and fundamental perspectives, particularly for active targeting as drug carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.