Abstract

Abstract For the purpose of building energy-saving, a novel one-piece wall ceramic board was prepared by using fly ash and ceramic waste as the main raw materials for its matrix part and foam part, respectively. The effects of raw material composition, sintering temperature on the macro and micro properties were systematically investigated. The optimum parameter for the matrix part was obtained at 1220 °C with 70 wt% fly ash and 4 wt% quartz, while that for the foam part was 1220 °C with 97 wt% ceramic waste and 3 wt% silicon carbide. For the matrix sample, the highest rupture modulus reaches 53.97 MPa, and the corresponding water absorption capacity and thermal conductivity are 1.08% and 0.54396 W/(m K), respectively. For the foam part, the best bulk density and thermal conductivity are 443 kg/m 3 and 0.10528 W/(m K), respectively. Subsequently, the optimal matrix and foam samples were introduced into the co-fired process (1220 °C), and the results show that the new method for the preparation of one-piece wall ceramic board was fully acceptable. Furthermore, the simulated results indicate that the proposed one-piece wall ceramic board can efficiently reduce the thermal bridges and exerts excellent energy conservation effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call