Abstract

Particle‐stabilized emulsions, called Pickering emulsions, can be produced by using starch particles. In this work we studied how the properties of the starch particles affect the droplet size and creaming of such emulsions. In the study, various sizes of starch particles were generated by two different methods and used to stabilize Pickering emulsions. Sedimentation according to Stokes’ law was used to separate small and large starch granules. Acid hydrolysis was another method used to obtain smaller particles. All samples were modified with octenyl succinic anhydride (OSA) to increase their hydrophobicity with a level of OSA substitution between 1.8 and 3.1%. The size of starch particles was the main factor influencing emulsion droplet sizes. Furthermore, the droplet size decreased as the starch concentration increased. Using small starch particles with sizes <10 μm produced stable emulsions with smaller droplet size compared with larger sizes of starch particles, >10 μm. When subjected to acid hydrolysis, smaller starch particles were generally obtained, which could subsequently create smaller emulsion droplets. The emulsion index increased for the acid‐hydrolyzed starch owing to the size reduction of starch particles. The shape of the starch seemed to have a minor impact on the droplet size and the creaming of Pickering emulsions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.